Элементарная и близкие к ней логические эквивалентности классических и универсальных алгебр

3.55 из 5, отдано 25 голосов

В монографии рассматриваются вопросы классификации классических и универсальных алгебр в тех или иных естественных языках математической логики. С подробными доказательствами излагаются классические результаты: элементарная эквивалентность булевых алгебр и абелевых групп, теорема Кейслера—Шелаха об изоморфизме, теорема Мальцева об элементарной эквивалентности линейных групп над полями. Также в книге приведены некоторые результаты авторов в этом направлении: элементарная эквивалентность линейных групп над кольцами и телами, элементарная эквивалентность решеток свободных алгебр, элементарная эквивалентность колец эндоморфизмов и групп автоморфизмов абелевых p-групп. В книге показаны разные способы доказательства классификации моделей по элементарным свойствам: с помощью насыщенных моделей, с помощью взаимной интерпретации моделей-параметров и производных моделей (в том числе и языка второго порядка), с помощью теоремы об изоморфизме.

Категория: монографии

ISBN: 978-5-4439-2488-5

Правообладатель: МЦНМО

Год: 2016

Легальная стоимость: 220.00 руб.

Ограничение по возрасту: 0+

Читать книгу «Элементарная и близкие к ней логические эквивалентности классических и универсальных алгебр» онлайн:

Комментарии ():