Математический аппарат теории R-функций применяется для описания объектов фрактальной геометрии функциями ɷ( x ) = 0, x ∈ Еn , где ɷ( x ) имеет вид единого аналитического выражения. Авторами были использованы следующие конструктивные средства: R-функции системы { R 0 }; суперпозиции функции ɷ( x , y ) с периодическими функциями, позволяющие транслировать n раз заданную функцию вдоль осей с шагом h x
и h y
вдоль окружности радиуса R ; свойство подобия фигур, описанных уравнениями ɷ( х , у ) = 0 и 1/ К ɷ( Кх , Ку ) = 0, где K – коэффициент подобия. В статье построены наиболее известные объекты фрактальной геометрии, такие как салфетка и ковер Серпинского, губка Менгера, кривая Коха, снежинка и крест Коха. Разработанные методы позволили также построить дерево Пифагора, кривую Леви.
Категория: программирование
Правообладатель: Синергия
Год: 2010
Легальная стоимость: 96.00 руб.
Ограничение по возрасту: 0+
Комментарии ():